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Abstract

INTRODUCTION: Abnormal amyloid-beta (Aβ) and tau deposition define Alzheimer’s

Disease (AD), butnon-elevated tau is relatively frequent inpatientson theADpathway.

METHODS: We examined characteristics and regional patterns of 397 Aβ+ unim-

paired and impaired individuals with low tau (A+T−) in relation to their higher tau

counterparts (A+T+).

RESULTS: Seventy-one percent of Aβ+ unimpaired and 42% of impaired Aβ+ indi-

viduals were categorized as A+T− based on global tau. In impaired individuals only,

A+T− status was associated with older age, male sex, and greater cardiovascular risk.

α-synuclein was linked to poorer cognition, particularly when tau was low. Tau burden
wasmost frequently elevated in a commonset of temporal regions regardless of T+/T−

status.

DISCUSSION:Lowtau is relatively common inpatients on theADpathwayand is linked

to comorbidities that contribute to impairment. These findings have implications for

the selection of individuals for Aβ- and tau-modifying therapies.
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1 INTRODUCTION

Amyloid-β (Aβ) plaques and pathological tau aggregates detected

in vivo in cognitively impaired individuals are the characteristics of

biomarker-defined Alzheimer’s disease,1 but Aβ and tau accumulation

and cognitive decline are dynamic processes that progress over the

course of disease. Abnormal Aβ accumulation occurs at least a decade

before the onset of cognitive impairment, whereas medial temporal

and neocortical tau accumulation occur later, are closely related to

impairment and, together with Aβ, predict future decline.2,3 There is

also considerable variability in Aβ and tau burden throughout disease

progression.

Based on the Alzheimer’s Disease National Institute on Aging–

Alzheimer’s Association (NIA-AA) Research Framework and forth-

coming Revised Criteria for Diagnosis and Staging of AD, “Core 1”

biomarkers that reflect early Aβ abnormality such as Aβ positron

emission tomography (PET)+ status (A+) define whether individuals

are on the AD pathway, and “Core 2” biomarkers such as tau PET

(T+/–) reflect a later stage of disease progression and are corre-

latedwith symptoms.1,4 In Aβ+ individuals who are cognitively normal,

tau burden that is within the normal range in medial and lateral

temporal regions likely reflects an early stage of disease and is consis-

tent with their lack of impairment. Among impaired Aβ+ individuals,

however, tau within the normal range (A+T− status) represents an

atypical course of disease that is nonetheless relatively common5–9

but poorly understood. A+T− individuals are characterized as experi-

encing “Alzheimer’s pathologic change,” which is considered an early

stage of disease, as opposed to “Alzheimer’s disease” (A+T+) which

requires evidence of elevated tau1 and is presumed to reflect more

progressed disease. However, in A+T− cognitively impaired patients,

factors that account for impairment despite normal tau burden are

unclear due to our limited ability to measure the full spectrum of age-

related neuropathologies in vivo, but autopsy studies have shown that

TDP-43, vascular pathology, and α-synuclein frequently accompany

Aβ and account for a substantial proportion of cognitive symptoms in

clinically-diagnosed AD.10–13

Understanding the characteristics of A+T− and A+T+ individuals

is important because A+/− and T+/− criteria are increasingly used

for participant selection in trials of Aβ- and tau-modifying therapies.

Impaired patients with tau in the normal range were excluded from

participation in recent Aβ-modifying14 and tau-modifying therapies,15

raising questions about the prevalence of such individuals and how

their treatment response would compare to their higher tau counter-

parts whowere enrolled in these trials.

The goal of this study was to determine which demographic, health,

andbiomarker characteristics are associatedwith low tau in individuals

on the AD pathway.We examined characteristics of A+T− unimpaired

and impaired participants from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) in relation to their A+T+ counterparts across a

variety of demographic, health/cardiovascular risk, biomarker, and cog-

nitivemeasurements, using average tau burden across a global cortical

region to define T+/–. Our use of global tau for our primary T+/– def-

inition is consistent with recent clinical trial approaches14 and was

intended to capture heterogeneous patterns of tau accumulation16 as

RESEARCH INCONTEXT

1. Systematic review: We used PubMed to identify publi-

cations examining variability in tau burden among unim-

paired and impaired individuals on the Alzheimer’s dis-

ease (AD) pathway based on abnormal Aβ burden. The

prevalence and clinical characteristics of individuals with

abnormal Aβ burden (Aβ+) but subthreshold tau are

poorly understood.

2. Interpretation: Our findings indicate that male sex, older

age, and elevated cardiovascular risk are more likely

in impaired Aβ+, low tau individuals, and further, that

the presence of α-synuclein has the strongest effect on

cognition when tau is low.

3. Future directions: This manuscript describes the fre-

quency of subthreshold tau in patients on the AD

pathway, and identifies characteristics and comorbidities

common to such patients that influence cognitive per-

formance. These findings may inform the selection of

individuals likely to benefit from anti-Aβ and tau thera-

pies.

well as to avoid regional bias related to T+/– group membership for

our subsequent region-wise “maximum tau” group analysis. We also

carried out regression models to determine the joint contributions of

tau and comorbid disease to continuous measures of cognitive perfor-

mance inorder todeterminewhich factorsmayaccount for impairment

when tau is low. To quantify comorbidities, we used cardiovascular risk

as a representativemeasure of vascular disease, and α-synuclein (mea-

sured in cerebrospinal fluid [CSF] with the seed amplification assay)

as a representative marker of age-related neuropathology other than

Aβ and tau.We predicted that comorbidities would bemore predictive

of cognitive performance in the absence of abnormal tau for impaired

patients only. Finally, we identified regions in which tau is consistently

highest in A+T– and A+T+ groups in order to determine whether the

regional distribution of tau accumulation is consistent evenwhen tau is

low.

2 METHODS

2.1 Study design and participants

Participants in this study included individuals enrolled in ADNI with

at least one Aβ PET and one tau PET scan and a corresponding mag-

netic resonance imaging (MRI) scan available as of July 2022 (N= 890),

focusing on Aβ PET+ individuals for the majority of analyses (N= 397;

168 unimpaired, 229 impaired). ADNI participant characteristics have

been previously described; all were between ages 55 and 90 years at

baseline, had completed at least 6 years of education, were fluent in

Spanish or English, and were free of any other significant neurologic
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LANDAU ET AL. 3

diseases. Individuals diagnosedwithADandmild cognitive impairment

(MCI) met standard diagnostic criteria and all cognitively normal par-

ticipants (with orwithout a subjective cognitive complaint) hadClinical

Dementia Rating scores of 0.17 The ADNI protocol was approved by

local Institutional Review Boards (IRBs) and written informed consent

was obtained from all participants.

2.2 Aβ PET imaging and analysis

Aβ PET images consisted of 4 × 5 minute frames acquired at 50

to 70 minutes ([18F] florbetapir [FBP]) or 90 to 110 minutes ([18F]

florbetaben [FBB]) post-injection. Frames were realigned, averaged,

resliced to a common voxel size (1.5mm3), smoothed to a common res-

olution of 8mm3 fullwidth at halfmaximum (FWHM), and coregistered

to T1MR images (MPRAGE) that were acquired concurrently with the

baseline PET images (mean time interval: 0.1± 0.5 years). These struc-

tural scans were used to define cortical summary (frontal, cingulate,

parietal, temporal) and reference regions (whole cerebellum. A total of

64% of the sample had available longitudinal Aβ PET data (see Table 1),
and a composite reference region used for longitudinal analyses18 in

native space for each individual using Freesurfer v7.1 and converted to

centiloids (CL) as described previously.19 Aβpositivity thresholds (FBP:
1.11/20 CL, FBB: 1.08/18 CL) were defined based on an upper limit

of Aβ standard uptake value ratios (SUVrs) in independent samples of

young controls processed using the same pipeline for each tracer.19

2.3 Hippocampal volumes

Hippocampal volume was defined on T1-weighted images acquired

concurrently with the baseline Aβ PET scan (mean time interval

0.16 ± 0.47 years) using Freesurfer v7.1 and adjusted for head size

by regressing out the relationship between hippocampal volume and

intracranial volume (ICV) using the ICV mean of 283 Aβ− healthy

controls and the slope of the hippocampal volume and total ICV

relationship20: HVadj = .00329(ICV)− 1432.55.

2.4 Fluorodeoxyglucose PET

Glucosemetabolismwas calculated in template space for each individ-

ual using study-independent, previously-validated AD-specific regions

of interest (ROIs; right and left inferior temporal and lateral parietal

regions, and a bilateral posterior cingulate cortex region) that were

averaged together and divided by the mean of a pons and cerebellar

vermis reference region.21

2.5 Tau PET scans

[18F]Flortaucipir (FTP)-PET images consisted of 6 × 5 minute frames

acquired at 75 to 105 minutes post-injection which were realigned,

averaged, resliced to a common voxel size (1.5 mm3), and smoothed

to a common resolution of 8 mm3 FWHM (http://adni-info.org). FTP

scans were coregistered to a contemporaneous MRI scan, and FTP

SUVRs in the following Freesurfer-defined regionswere calculated rel-

ative to inferior cerebellar gray matter uptake22: entorhinal cortex,

temporal metaROI (entorhinal, amygdala, parahippocampal, fusiform,

inferior temporal, and middle temporal),23 and a global tau region

made up of medial and lateral temporal and extratemporal neocorti-

cal regions (see SupplementaryMaterials). Hippocampuswas excluded

due to off-target signal contamination.22 We defined the following

tau PET positivity thresholds in each tau PET ROI based on the

90th percentile of 287 ADNI Aβ− cognitively unimpaired individu-

als: entorhinal cortex, 1.23; temporal metaROI, 1.26; global region,

1.16. Longitudinal tau PET data was available for approximately 50%

of the sample (impaired: 91/168, 54%; impaired, 113/229, 49%; see

Table 1).

2.6 CSF and plasma ptau181

CSF ptau181 data (available for 46% of the sample; see Table 1) was

analyzed at the University of Pennsylvania using the Roche Elecsys

immunoassay and protocol.24 Plasma ptau181 (available for 39% of

the sample) was analyzed using SIMOA and an in-house assay at the

University of Gothenburg.25

2.7 Plasma neurofilament light

Plasma neurofilament light (NfL) data (also available for 46% of

the sample; see Table 1) was analyzed by the Blennow Lab with

SIMOA using a home brew kit (Quanterix Corporation) as previously

described.26

2.8 Cognitive assessments

We used the Mini-Mental State Examination (MMSE)27 and the Pre-

clinical Alzheimer Cognitive Composite (PACC) scores28 measured

at the time of the baseline tau scan (time interval: 0.09 ± 0.14

years). About 75% of the sample (298/397 individuals) had longi-

tudinal cognitive data acquired at approximately annual intervals

(average follow-up 2.4 ± 1.2 years; also see Table 1), using test scores

acquired no earlier than 6 months prior to the baseline tau PET

scan.

2.9 Comorbidities

2.9.1 Cardiovascular and cerebrovascular risk

We calculated 10-year risk of a cardiovascular event using the non-

laboratory test-based Framingham Risk Score (FRS), a model-derived
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4 LANDAU ET AL.

TABLE 1 Demographic, health risk, biomarker, and cognitive characteristics associated with high/low tau status among ADNI Aβ+ unimpaired
and impaired groups.

Unimpaired Impaired

A+T− A+T+ pval A+T− A+T+ pval

N 119 49 96 133

Subjectivememory

complaint (%)

9% 31% 0.003 – – –

EMCI/LMCI/AD (%) – – – 14/58/28 9/46/45 0.03

Age (yrs) 74.2± 7.9 76.2± 6.1 ns 77.7± 8.5 74.4± 7.6 0.004

Participant

characteristics

Sex (%F) 59% 63% ns 33% 53% 0.004

Racial group (%URG) 11.8% 10.2% ns 4.2% 12.8% 0.026

Education (years) 16.7± 2.4 16.6± 2.2 ns 16.3± 2.6 15.5± 2.4 0.01

APOE4 carriers (%) 49% 58% ns 62% 69% ns

#Overall health

conditions

11.6± 7.2 15.1± 9.1 0.01 12.5± 8.0 12.3± 9.0 ns

# Cardiovascular

conditions

1.2± 1.1 1.5± 1.2 ns 2.0± 1.8 1.4± 1.5 0.01

FraminghamRisk Score 25± 15 29± 17 ns 32± 17 25± 15 <0.001

Comorbid disease

and pathology

Hypertension (%) 48% 51% ns 62% 40% 0.002

Hyperlipidemia (%) 55% 63% ns 57% 47% 0.12

Diabetes (%) 9% 12% ns 14% 11% ns

Modified Hachinski> 0

(%)

51% 50% ns 59% 46% 0.04

Whitematter

hyperintensities (adj)

1.32± .94 1.58± .97 0.12 1.80± 1.05 1.54± 0.92 0.05

α-synuclein+ 14/84 (17%) 13/42 (31%) 0.055 18/69 (26%) 31/107 (29%) ns

Amyloid PET (CL) 50± 30 65± 34 0.003 70± 32 89± 34 <0.001

Amyloid Annual CL change 3.6± 3.1 5.0± 4.7 0.090 4.3± 2.9 3.4± 5.3 ns

Longitudinal CL

follow-up (years)

3.2± 1.1 3.2± 1.2 ns 2.5± 1.0 2.4± 1.0 ns

FTP Entorhinal cortex 1.15± .14 1.32± .15 <0.001 1.27± .18 1.63± .28 <0.001

T+ Entorhinal cortex 22% 69% <0.001 57% 95% <0.001

FTP slope Entorhinal

cortex

.02± .04 .01± .05 ns .02± .05 .02± .08 ns

FTP TemporalMetaROI 1.18± .07 1.39± .17 <0.001 1.25± .12 1.74± .40 <0.001

T+ TemporalMetaROI 13% 90% <0.001 45% 98% <0.001

Tau FTP slope Temporal

MetaROI

.01± .04 .04± .06 0.01 .03± .04 .08± .01 0.006

FTPGlobal ROI 1.08± .05 1.24± .09 <0.001 1.09± .05 1.42± .27 <0.001

T+Global ROI 0% 100% – 0% 100% –

FTP slope Global ROI .02± .04 .04± .06 <0.001 .06± .07 .01± .02 <0.001

FTP slope follow-up time

(years)

2.3± 1.1 2.4± 1.3 ns 2.1± 1.0 1.9± 0.8 ns

CSF ptau181 27.5± 14.6 31.4± 11.8 ns 27.8± 10.3 38.0± 18.0 <0.001

Plasma ptau181 17.1± 10.0 16.4± 8.04 ns 18.3± 9.88 21.0± 8.51 ns

Hippocampal volume

(adj)

7570± 800 7490± 703 ns 6890± 1070 6390± 919 <0.001

Neurodegeneration Hippocampal volume

slope (adj)

2.48± 1.08 2.15± .88 ns 2.10± .90 1.95± .87 ns

(Continues)
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LANDAU ET AL. 5

TABLE 1 (Continued)

Unimpaired Impaired

A+T− A+T+ pval A+T− A+T+ pval

N 119 49 96 133

PlasmaNfL 41.9± 22.1 38.7± 23.4 ns 48.3± 29.0 46.5± 14.7 ns

FDG 1.28± .12 1.33± .10 0.06 1.17± .14 1.11±.16 0.006

MMSE 29.0± 1.3 28.9± 1.3 ns 26.8± 2.9 24.6± 4.2 <0.001

MMSE slope −0.1± .8 −0.3± 1.0 ns −0.8± 1.7 −2.0± 2.8 <0.001

Cognition PACC 0.3± 2.7 0.7± 3.0 0.04 −7.8± 5.2 −12.5± 7.5 <0.001

PACC slope −0.3± 1.0 −0.6± 1.5 ns −1.4± 2.6 −3.1± 4.0 0.002

Longitudinal cognitive

follow-up (years)

3.2± 1.2 3.2± 1.4 ns 2.7± 1.3 2.2± 1.1 ns

Note: p-values that meet a Bonferroni-corrected criterion are underlined.Nonmissing data for T−/T+ unimpaired individuals. APOE4 108/46, Longitudinal
FTP 64/27, CSF 56/24, plasma 44/25, longitudinal hippocampal slope 77/26, FDG 49/24, longitudinal amyloid PET 85/34, longitudinal PACC 94/36.Non-

missing data for T−/T+ impaired individuals. APOE4 84/115, Longitudinal FTP 50/63, CSF data 43/60 , plasma 39/47, long hipp slope 62/75, FDG 86/115,

longitudinal amyloid PET 62/75, longitudinal PACC 73/95.

Abbreviations: Aβ, amyloid-β; ADNI, Alzheimer’s DiseaseNeuroimaging Initiative; APOE4, apolipoprotein E4; CSF, cerebrospinal fluid; EMCI, EarlyMild Cog-

nitive Impairment; FDG, fluorodeoxyglucosePET; FTP, [18F] flortaucipir; LMCI, LateMildCognitive Impairment;MMSE,Mini-Mental State Examination;NfL,

neurofilament light; PACC, Preclinical Alzheimer’s Cognitive Composite; PET, positron emission tomography, ROI, region of interest; URG, underrepresented

racial group.

composite score with the following predictors: age, sex, body mass

index, systolic blood pressure, antihypertensive medication use, smok-

ing, and diabetes status.29

We also used clinical interview medical records to determine Mod-

ified Hachinski scores and the presence/absence of self-reported

hypertension, hyperlipidemia, and diabetes, the number of cardiovas-

cular conditions, and the number of overall health conditions from

among the following categories: psychiatric, neurologic/noncognitive,

head/eyes/ears/nose/throat, cardiovascular, respiratory, hepatic, der-

matologic/connective tissue, musculoskeletal, endocrine-metabolic,

gastrointestinal, hematopoietic/lymphatic, renal/genitourinary, aller-

gies/drug sensitivities, smoking/alcohol/drug use, malignancy, cogni-

tive disorder.

White matter hyperintensities (WMH) were quantified using pre-

viously validated methods.30,31 All segmentation is initially performed

in standard space resulting in probability likelihood values of WMH at

each voxel in the white matter thresholded at 3.5 SD above the mean

to create a binary WMH mask. Further segmentation is based on a

modified Bayesian approach that combines image likelihood estimates,

spatial priors, and tissue class constraints based on prior probabil-

ity maps for WMH created from more than 700 individuals with

semi-automatic detection of WMH followed by manual editing. The

segmented WMH masks are then back-transformed into native space

for tissue volume calculation.

We adjusted WMH for head size by regressing out the relation-

ship between natural log-transformed WMH and ICV using the ICV

mean of 283 Aβ− healthy controls and the slope of theWMHand total

intracranial volume relationship20:

WMHadj = ln(WMH + 1) − (0.00040241(ICV − 1432.55)).

2.9.2 α-synuclein

We categorized 75% (301/400) of participants who had a lumbar

puncture as α-synuclein+/− based on a synuclein seed amplification

assay carried out in the Amprion Clinical Laboratory (CLIA ID No.

05D2209417; CAP No. 8168002). When multiple CSF samples per

participant were taken over time, the most recent was chosen for

analysis (mean lumbar puncture and baseline tau PET time inter-

val = 0.2 ± 2.9years; see Supplementary Figure). This assay detects

misfoldedα-synuclein aggregates inCSF andperipheral tissues andhas
been described in detail elsewhere.32 A positive result indicates that

α-synuclein aggregates were detected, consistent with Type 1 seeds

seen in Parkinson’s disease (PD) and Lewybody dementia (LBD) orwith

Type 2 seeds seen in multiple system atrophy (MSA), while a negative

result reflects the absence of such aggregates. An indeterminate result

occurs when a determination cannot be made after a sample is tested

twice.

2.10 Statistical methods

The amount of available data varied across measures; nonmissing data

for each variable are listed in Table 1.

2.10.1 Comparison of A+T− and A+T+ groups

Unimpaired and impaired A+T− and A+T+ groups were compared

on demographic, comorbid disease, AD biomarker (Aβ, tau, neurode-
generation), and cognitive measurements using independent-samples
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6 LANDAU ET AL.

t tests (continuous variables) and chi-square tests (categorical vari-

ables) at α = 0.05. For longitudinal measurements, annualized slopes

were calculated using all available time points.

2.10.2 Prediction of cognitive performance

Regression models were carried out in R and SPSS (v27) separately

for unimpaired and impaired Aβ+ groups associating baseline cog-

nitive outcomes (PACC, MMSE) with comorbidity predictors (FRS,

α-synuclein+/− status), tau (global tau SUVr), tau and comorbidity

interactions (global tau × FRS, global tau × α-synuclein), as well as age
at baseline PET, sex, underrepresented racial group (URG) status (+/−),

apolipoprotein E (APOE) ε4 status (+/−), and education.

2.10.3 Tau regionwise analysis for A+T− and
A+T+ groups

Finally, we examined regionwise baseline FTP SUVrs and SUVr slopes

averaged across A+T− and A+T+ groups for 70 FreeSurfer-defined

regions (see Supplementary Materials). Regional tau SUVrs were

ranked for each individual (region rank 1 = highest SUVr, region rank

70 = lowest SUVr), then the median rank for each region was deter-

mined within each A+T− and A+T+ unimpaired and impaired group.

The same procedure was carried out to rank regional SUVr slopes.

3 RESULTS

3.1 Aβ+ individuals with tau PET in the normal
range

Of the entire sample with available Aβ and tau PET scans (N = 890),

there were 397 Aβ+ individuals. Of this group, 64% of unimpaired

and 20% of impaired individuals had entorhinal tau within the normal

range, 65% of unimpaired and 24% of impaired individuals had normal

temporal tau, and 71% of unimpaired and 42% of impaired individuals

hadnormal global tau (Figure1A).A total of 87%of the samplewas con-

cordant on tau status in the entorhinal and temporal metaROI regions

(T+ on both or T− on both), and 88%was concordant on T+/− status in

the temporal metaROI and global regions (Figure 1B).

3.2 A+T− / A+T+ group comparisons based on
global tau

To further explore T+ versus T− comparisons without regional bias

in the Aβ+ sample, we used the global tau region to define T+/T−

groups in subsequent analyses. We examined factors associated with

low tau in unimpaired (119 A+T−, 49 A+T+) and impaired individu-

als (96 A+T−, 133 A+T+) by comparing A+T− to A+T+ groups with

respect to demographic, health risk/comorbidities, AD biomarker, and

cognitive variables (Table 1). Some data were missing, particularly for

plasma biomarkers and longitudinal follow-up (see Table 1 footnote for

nonmissing data for each variable).

Among individuals with available longitudinal tau PET data, 7/64

(11%) unimpaired A+T− and 12/50 (24%) impaired A+T− converted

to A+T+ status (based on global tau) over an average of 2.2± 1.1 years

of follow-up (also see Table 1 for slopes).

3.2.1 Unimpaired A+T− versus A+T+ individuals

Compared to their A+T+ counterparts, unimpaired A+T− individuals

had a smaller number of self-reported overall health conditions, had

significantly higher PACC scores, and were less likely to report a sub-

jective memory complaint, but did not differ significantly on age, sex,

race, education, APOE4, or cardiovascular risk measures.

Of 126 unimpaired individuals with α-synuclein status data, 14/84

(17%) A+T−were α-synuclein+, a marginally smaller proportion com-

pared to A+T+ individuals who were α-synuclein+ (13/42, 31%;

p = 0.055). Of the α-synuclein+ results, all were consistent with Type

1 pathology (suggestive of LBD or PD) except for one A+T− indi-

vidual with Type 2 pathology (consistent with MSA); there were no

indeterminate samples.

On AD biomarkers, unimpaired A+T− individuals had lower Aβ
(CLs), and, consistent with group definition, they had lower tau and

lower tau slopes acrossmost ROIs, but entorhinal cortex slopes did not

differ significantly between groups. A+T− individuals had marginally

greater hypometabolism but the groups did not differ significantly on

hippocampal volume, on CSF or plasma ptau181, or on plasma NfL,

though there were reduced sample sizes for somemeasures.

3.2.2 Impaired A+T− versus A+T+ individuals

Compared to their A+T+ counterparts, impaired A+T− individuals

were older, more likely to be male, self-identify as White, and had

higher education, but the groups did not differ significantly on APOE4.

The groups did not differ on overall health conditions or α-synuclein+
status.

Of 176 impaired individuals with α-synuclein status data, 18/69

(26%) A+T− were α-synuclein+, a proportion that did not differ

from A+T+ individuals who were α-synuclein+ (31/107, 29%). All α-
synuclein+ results were consistent with Type 1 pathology (LBD or PD)

and there were no indeterminate samples.

A+T− individuals reported a significantly higher number of cardio-

vascular health conditions, had higher FRS values, were more likely

to have hypertension, a modified Hachinski score greater than zero,

and had marginally greater WMH. The A+T− group was less impaired

on baseline entorhinal, temporal, and global tau PET, and had less tau

accumulation longitudinally in temporal and global tau regions but

not entorhinal cortex (Figure 2A). Baseline Aβ was also lower in the
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LANDAU ET AL. 7

F IGURE 1 Tau PET SUVrs in ADNI participants. (A) Tau SUVr distributions for each region of interest are shown across ADNI unimpaired (N,
cognitively unimpaired; SMC, subjective memory complaint) and impaired (EMCI, early mild cognitive impairment; LCMI, late mild cognitive
impairment) participants. The red dotted lines represent the positivity threshold (90th percentile of the Aβ− cognitively unimpaired group). The
percent of Aβ+ unimpaired and impaired individuals with tau in the normal (−) range of tau is shown for each region of interest. (B) Correlations
are also shown between SUVrs for tau regions of interest across Aβ− and Aβ+ individuals. Aβ, amyloid-β; ADNI, Alzheimer’s DiseaseNeuroimaging
Initiative; FTP, [18F] flortaucipir; PET, positron emission tomography; SUVr, standard uptake value ratio.

A+T− group but longitudinal Aβ slopes did not differ between groups

(Figure 2B). CSF ptau181, hippocampal volume, and hypometabolism

were all less abnormal in the A+T− group, and baseline and lon-

gitudinal cognition was less impaired. Entorhinal cortical tau slope,

hippocampal volume slope, plasma ptau, and plasma NfL did not differ

significantly between groups.

3.3 Predictors of cognitive performance

We examined whether comorbid disease or co-pathology, assessed

with FRS and α-synuclein, and tau independently and/or jointly

influenced cognition. There were separate regression models for

unimpaired/impaired groups, for each tau region (entorhinal cor-

tex, temporal metaROI, global cortical), and for each outcome

(PACC,MMSE).

Among unimpaired Aβ+ individuals, the only significant predictor of

higher PACC scores across all three models (for each tau region) was

younger age. Tau, FRS, α-synuclein, tau × FRS, and tau × α-synuclein
were not associated with PACC (model results not shown). We did not

carry out regression models with MMSE as an outcome in unimpaired

individuals because scores were>28 in 95% of individuals.

Among impaired Aβ+ individuals, low tau in each region of inter-

estedwas consistently associatedwith higher PACCandMMSE scores.

FRS and FRS × tau were not significant predictors of PACC or MMSE

in any model (Table 2). The tau × α-synuclein interaction was signifi-

cant in 5/6 models, and marginally significant in the remaining model,

such that α-synuclein+ status was associated with poorer PACC and

MMSE scores only when tau (across all three regions of interest) was

low (Table 2, Figure 3).

3.4 Tau regional rankings

Weexamined the ranked regional distributions of tau in 70 FreeSurfer-

defined regions for each individual, then determined the median rank

of each region for unimpaired and impaired A+T− and A+T+ groups.

The regional pattern of the resulting median regional rankings was

comparable across A+T+ and A+T− unimpaired and impaired groups,

with medial and lateral temporal regions consistently ranked highest

(Figure 4A) despite the substantial differences in global tau SUVrs in

T− versus T+ groups based on group definition. There were similar

findings for tau SUVr slopes, with comparable ranked regional slopes

betweengroups (Figure4B). The regional patternof high-ranked slopes

differed from the regional pattern of high-ranked baseline tau in that

medial temporal slopes were highly ranked in the unimpaired A+T−

group only (see Supplementary Materials for complete region rank

lists).
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8 LANDAU ET AL.

F IGURE 2 Tau and Aβ trajectories in Aβ+ impaired
individuals. Descriptive plots of individual (A) raw tau
PET SUVrs are shown for each ROI (entorhinal cortex;
temporal metaROI; and the global region, which was
used to define T+/− groups) and (B) centiloids as a
function of age. Aβ, amyloid-β; PET, positron emission
tomography; ROI, region of interest; SUVr, standard
uptake value ratio.
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LANDAU ET AL. 9

TABLE 2 α-synuclein and tau are associated with cognitive performance in impaired Aβ+ individuals.

A. PACC outcomemodels

95% confidence interval

Entorhinal cortex taumodel Estimate SE t-value p-value lower upper partial η2

Intercept 4.37 7.45 0.59 0.559 −10.37 19.11 0.003

Sex (Female) 0.95 1.45 0.66 0.513 −1.91 3.81 0.003

Education 0.37 0.21 1.82 0.072 −0.03 0.78 0.024

APOE4 (−) −0.77 1.07 −0.72 0.473 −2.88 1.35 0.004

Age −0.13 0.06 −1.98 0.050 −0.26 0.00 0.028

FRS −0.01 0.16 −0.08 0.937 −0.33 0.30 0.000

α-synuclein status (−) 11.45 5.17 2.22 0.028 1.23 21.67 0.035

Entorhinal cortex tau SUVr −8.57 2.95 −2.90 0.004 −14.41 −2.73 0.059

Tau X FRS 0.01 0.11 0.13 0.898 −0.20 0.23 0.000

Tau X α-synuclein −5.63 3.35 −1.68 0.096 −12.26 1.01 0.020

95% confidence interval

Temporal metaROI taumodel Estimate SE t-value p-value lower upper partial η2

Intercept 12.29 6.50 1.89 0.061 −0.56 25.15 0.026

Sex (Female) 0.41 1.34 0.31 0.759 −2.24 3.06 0.001

Education 0.26 0.19 1.31 0.192 −0.13 0.64 0.013

APOE4 (−) 0.35 0.96 0.36 0.716 −1.55 2.25 0.001

Age −0.22 0.06 −3.59 <0.001 −0.34 −0.10 0.087

FRS −0.04 0.12 −0.36 0.721 −0.28 0.19 0.001

α-synuclein status (−) 11.56 3.72 3.11 0.002 4.21 18.92 0.067

Temporal metaROI tau SUVr −7.56 1.96 −3.85 <0.001 −11.44 −3.68 0.099

Tau X FRS 0.03 0.08 0.44 0.658 −0.12 0.19 0.001

Tau X α-synuclein −5.54 2.26 −2.45 0.016 −10.02 −1.06 0.042

95% confidence interval

Global taumodel Estimate SE t-value p-value lower upper partial η2

Intercept 21.54 7.29 2.96 0.004 7.13 35.95 0.061

Sex (Female) 0.64 1.34 0.48 0.634 −2.01 3.29 0.002

Education 0.30 0.19 1.56 0.121 −0.08 0.69 0.018

APOE4 (−) 1.25 0.96 1.30 0.196 −0.65 3.15 0.012

Age −0.31 0.07 −4.70 <0.001 −0.43 −0.18 0.141

FRS −0.16 0.14 −1.11 0.271 −0.43 0.12 0.009

α-synuclein status (−) 15.63 4.27 3.66 <0.001 7.18 24.08 0.090

Global tau SUVr −12.41 3.08 −4.04 <0.001 −18.49 −6.33 0.108

Tau X FRS 0.14 0.11 1.32 0.190 −0.07 0.36 0.013

Tau X α-synuclein −9.81 3.14 −3.13 0.002 −16.01 −3.61 0.068

B.MMSE outcomemodels

95% confidence interval

Entorhinal cortex taumodel Estimate SE t-value p-value lower upper partial η2

Intercept 34.55 4.78 7.23 <0.001 25.11 44.00 0.279

Sex (Female) 0.53 0.93 0.58 0.565 −1.30 2.37 0.002

Education 0.16 0.13 1.22 0.225 −0.10 0.42 0.011

APOE4 (−) −0.71 0.69 −1.04 0.300 −2.07 0.64 0.008

Age −0.07 0.04 −1.57 0.118 −0.15 0.02 0.018

(Continues)
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10 LANDAU ET AL.

TABLE 2 (Continued)

B.MMSE outcomemodels

95% confidence interval

Entorhinal cortex taumodel Estimate SE t-value p-value lower upper partial η2

FRS −0.06 0.10 −0.62 0.539 −0.26 0.14 0.003

α-synuclein status (−) 5.39 3.31 1.63 0.106 −1.16 11.94 0.019

Entorhinal cortex tau SUVr −5.28 1.89 −2.79 0.006 −9.02 −1.53 0.054

Tau X FRS 0.05 0.07 0.67 0.503 −0.09 0.19 0.003

Tau X α-synuclein −2.79 2.15 −1.30 0.197 −7.04 1.46 0.012

95% confidence interval

Temporal metaROI taumodel Estimate SE t-value p-value lower upper partial η2

Intercept 38.51 4.18 9.22 <0.001 30.25 46.77 0.386

Sex (Female) 0.25 0.86 0.29 0.772 −1.45 1.95 0.001

Education 0.10 0.13 0.78 0.438 −0.15 0.34 0.004

APOE4 (−) −0.14 0.62 −0.23 0.816 −1.37 1.08 0.000

Age −0.11 0.04 −2.88 0.005 −0.19 −0.04 0.058

FRS −0.06 0.08 −0.85 0.399 −0.21 0.09 0.005

α-synuclein status (−) 5.97 2.39 2.50 0.014 1.25 10.70 0.044

Temporal metaROI tau SUVr −4.56 1.26 −3.62 <0.001 −7.05 −2.07 0.088

Tau X FRS 0.05 0.05 0.93 0.357 −0.05 0.14 0.006

Tau X α-synuclein −3.09 1.45 −2.12 0.036 −5.96 −0.21 0.032

95% confidence interval

Global taumodel Estimate SE t-value p-value lower upper partial η2

Intercept 43.93 4.63 9.49 <0.001 34.77 53.08 0.400

Sex (Female) 0.38 0.85 0.45 0.657 −1.31 2.06 0.001

Education 0.12 0.12 1.00 0.318 −0.12 0.37 0.007

APOE4 (−) 0.34 0.61 0.55 0.581 −0.87 1.55 0.002

Age −0.16 0.04 −3.85 <0.001 −0.24 −0.08 0.099

FRS −0.14 0.09 −1.61 0.110 −0.32 0.03 0.019

α-synuclein status (−) 8.26 2.72 3.04 0.003 2.89 13.63 0.064

Global tau SUVr −7.62 1.95 −3.90 <0.001 −11.48 −3.76 0.101

Tau X FRS 0.13 0.07 1.79 0.075 −0.01 0.26 0.023

Tau X α-synuclein −5.47 1.99 −2.75 0.007 −9.42 −1.53 0.053

Note: Regressionmodel results are shown for prediction of (A) PACCand (B)MMSE in impairedAβ+ individuals. Separatemodelswere fitted for each tauPET

region of interest. Raw data representing interactions for eachmodel are illustrated in Figure 3. Significant predictors are shown in bold, and thosemeeting a

Bonferroni correction are underlined.

Abbreviations: Aβ, amyloid-β; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE4, apolipoprotein E4; FRS, Framingham Risk Score; MMSE, Mini-

Mental State Examination; PACC, Preclinical Alzheimer’s Cognitive Composite; SUVr, standard uptake value ratio.

4 DISCUSSION

Although tau burden is a key predictor of cognitive impairment in

individuals on the AD pathway, we found that 20% to 42% (depend-

ing on the region assessed) of Aβ+ cognitively impaired individuals

had tau PET burden within the normal range, indicating that a sub-

stantial proportion of symptomatic patients on the AD pathway have

an atypical biomarker signature (A+T−) that is characterized as “AD

pathologic change” but does not meet NIA-AA criteria for AD. One

explanation for low tau is an earlier stage of disease progression,2,33

and this is consistent with some of our findings (lower Aβ, lower
tau and neurodegeneration markers, better cognitive performance in

A+T− individuals). But impaired A+T− individuals differed from their

A+T+ counterparts in additional ways that are not consistent with

earlier disease stage: they were more likely to be male, older, more

highly educated, and had more cardiovascular disease (CVD) risk fac-

tors including higher FRSvalues,modifiedHachinski scores, andWMH.

They were also less likely to self-identify as belonging to a non-White
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LANDAU ET AL. 11

F IGURE 3 The effect of α-synuclein and tau on cognitive performance in Aβ+ impaired individuals. Raw data from (A) PACC scores and (B)
MMSE scores are shown as a function of each tau region of interest for α-synuclein± groups. Statistical significance of tau by α-synuclein
interaction term is shown based on regressionmodels (seeMethods); full linear regressionmodel results appear in Table 2. Aβ, amyloid-β; MMSE,
Mini-Mental State Examination; PACC, Preclinical Alzheimer’s Cognitive Composite.

F IGURE 4 Regional tau SUVrs and ranked regional tau in Aβ+ high and low tau unimpaired and impaired groups. Brain renderings of 70
FreeSurfer-defined tau PET baseline regional median ranks (A) and ranked regional slopes (B) are shown for each unimpaired/impaired and
high/low tau Aβ+ group.Medial temporal regions (entorhinal cortex, amygdala) were included in themean calculations and ranking, but are not
visible on the renderings, so their position is shown on the color bar for comparison with other regions. See SupplementaryMaterials for complete
list of regional rankings. Aβ, amyloid-β; PET, positron emission tomography; SUVr, standard uptake value ratio.

racial group (ie, URG), although interpretation of this finding is limited

by the small number of URG participants.

Also in the impaired group only, α-synuclein was linked to poorer

cognition when tau is low, providing in vivo biomarker support for

pathology evidence that mixed pathologies contribute to cognitive

performance,10,12 and also indicating that the toxic influence of tau

may surpass that of other co-pathologies as tau burden increases. Tau

and α-synuclein had additional independent effects on cognition, but

the main effect of tau was more consistent and explained more vari-

ance than thatofα-synuclein. Thiswas trueof all tau regionsof interest,
but the tau × α-synuclein interaction had the strongest effect on cog-

nition in temporal and global regions of interest, consistent with a

primary role for cortical tau burden in disease progression and cogni-

tive symptoms.34,35 Interestingly, although CVD was more prevalent

in the A+T− impaired group, FRS was not associated with cognition in

either the impaired or unimpaired groups, independently or as a joint

predictor with tau.

Our findings extend previous work showing that tau can remain

low for extended time periods despite Aβ positivity,9 and are in agree-
ment with recent evidence that approximately 50% to 65% of Aβ+
MCI and 8% to 20% of Aβ+ AD patients have entorhinal and tempo-

ral tau PET in the normal range, while larger proportions have normal
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12 LANDAU ET AL.

extratemporal neocortical tau.8 Also consistent with our findings, T−

status and lower tau accumulation over time has been associated with

older age, male sex, less neurodegeneration assessed with cortical

thickness in AD-specific regions (assessed with hippocampal volume

and hypometabolism in our study), and less cognitive impairment.5,6,8

Our findings are also consistent with neuropathology studies report-

ing that neurofibrillary tangles at autopsy are lower in men than

women7,36 and that pathology such as TDP-43, α-synuclein, and vas-

cular pathology that frequently accompanies Aβ and tau but cannot

be detected in vivo is common in clinically-diagnosed AD 11,37,38

and is more common in older than younger patients with clinical

AD.7 Although our ability to assess the full range of age-related

neuropathologies (eg, TDP-43, FTLD-tau, pathology associated with

small vessel disease) is limited by currently available in vivo biomark-

ers, α-synuclein may be representative of other co-pathologies on

impairment, either via a direct effect on cognitive performance, or by

increasing vulnerability tomodest amounts of tau. Theα-synucleinCSF
seed amplification assay used in this study has been validated patho-

logically in PD and LBD, as well as, importantly, diffuse pathology in

the context of diagnoses other than LBD,32 suggesting that this assay

is sensitive to α-synuclein observed in clinically-diagnosed AD patients

such as those in ADNI, and has been linked to cognitive deficits even in

unimpaired Aβ+/− individuals.39

Our findings also suggest that variability in tau burden may play a

role in the efficacy of Aβ- and tau-modifying therapies. ADNI has tar-

geted enrollment of individuals who would be likely to participate in

a clinical trial of therapeutic AD treatment,40 so the frequency of T−

individuals in this study is likely to be representative of those in an

Aβ- or tau-modifying treatment trial, contrasting with some tau PET

studies with participants recruited from tertiary clinics who have early

onset AD and/or atypical syndromes that may have disproportionately

higher tau than is seen in the older population and drive associations

between tau and cognitive performance.41 Screening for the presence

ofAβ and/or tau is increasingly used to ensure the presence of the ther-
apeutic target, such as selecting participants with intermediate global

tau in the donanemab phase 1 and 2 trials.14,42 Our results suggest

that individuals with lower tau may progress too slowly to respond

to treatment or may have different characteristics and/or comorbidi-

ties that account for their impairment and that may make an Aβ- or
tau-modifying treatment less effective.

Strengths of this study include the large sample of unimpaired and

impaired individuals, and extensive biomarker, demographic, health,

and cognitive phenotyping in a sample that is geographically diverse,

though ADNI participants lack racial and ethnic diversity. There were

also several limitations. First, although ADNI offers broad biomarker

phenotyping compared to many observational studies, only a sub-

set of individuals had longitudinal data and certain measurements

(eg, plasma ptau181 and NfL, α-synuclein), limiting interpretation of

findings related to these variables. Following the in-progress revised

diagnostic criteria for AD,4 more complete characterization of fluid

(Core 1; “early”) biomarkers such as plasma ptau 217 and 231 rela-

tive to PET (Core 2; “late”) could provide information about whether

there is early pathology in the A+T− group that is not detectable with

PET but could nonetheless contribute to cognitive performance; the

available (but limited) CSF ptau181 and plasma ptau181 findings are

inconsistent, with CSF ptau181 indicating low tau in A+T− individuals

and plasma ptau181 showing no difference between A+T− and A+T+

groups. The importance of comparing fluid to PET biomarkermeasure-

ments is reinforced by reports that FTP PET signal is unlikely to be

sensitive to early stages of tau burden at autopsy,43,44 suggesting our

assessment of tau in this study reflects significantly progressed pathol-

ogy. This alignswithourobservation that subthreshold tau in theA+T−

individuals accumulates in a similar, temporal-predominant pattern as

the A+T+ individuals, emphasizing the role of lateral temporal regions

in Aβ-specific disease progression45 and indicates that tau PET accu-

mulates in an AD-like pattern that is suggestive of disease progression

evenwhen it is within the normal range.

A second limitation is that a survival effect may have contributed

to our group differences, since individuals who are high in tau and

other comorbiditiesmay be less likely to participate in research studies

or may not meet enrollment criteria. Third, findings may differ when

using different methodological approaches to defining elevated tau,

although tau regions of interest were highly inter-correlated, and our

regression results were similar across these regions of interest. Finally,

we did not use partial volume corrected data to define tau status; atro-

phy decreases tracer signal resulting in lower SUVrs, especially for

older, symptomatic individuals, so non-partial volume corrected data

is likely a conservative estimate of tau accumulation in this sample.

The pattern of characteristics associated with low tau in impaired

but not unimpaired Aβ+ individuals suggests that before significant

impairment is present, low tau in the presence of Aβ primarily reflects

an earlier stage of disease. Once cognitive impairment is present, how-

ever, A+T− status is associated with a more complex, heterogeneous

profile that cannot simply be explained by an earlier course of disease

since it is more common in older individuals. Impairment in such indi-

viduals is driven by α-synuclein to a greater extent than tau or CVD.

Although it is not currently possible to assess many other age-related

co-pathologies in AD, α-synuclein is likely to be representative of these
other co-pathologies in its influence on cognition in individuals on the

AD pathway.
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Laurel Beckett, PhD University of California, Davis Core Leader Coordinated Biostatistics Core

Paul Aisen,MD University of Southern California Core Leader Coordinated Clinical Core
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Clifford Jack,MD Mayo Clinic, Rochester, Minnesota Core Leader CoordinatedMRI core

John C.Morris, MD Washington University Core Leader Coordinated neuropathology Core
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Note: Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As

such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or

writing of this report. A complete listing of ADNI investigators can be found at:.

http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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